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Near-contact electrophoretic particle motion 

By MICHAEL LOEWENBERGT A N D  ROBERT H. DAVIS1 
Department of Chemical Engineering, University of Colorado, Boulder, CO 80309-0424, USA 
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The near-contact axisymmetric electrophoretic motion of a pair of spherical particles 
with thin electric double layers and differing surface zeta-potentials is analysed for low 
Reynolds numbers and moderate surface potentials. Near-contact electrophoretic 
motion of a spherical particle normal to a planar conducting boundary is analysed 
under the same assumptions. Pairwise motion is computed by considering touching 
particles in point contact; relative motion is described by a perturbation about the 
touching state using lubrication theory. Analytical formulae are derived for two 
particles of disparate sizes, and for the motion of a single particle towards a boundary; 
numerical calculations are performed for all size ratios. The results have a universal 
form with respect to the particle zeta-potentials. All results indicate that the 
electrophoresis is a much more efficient mechanism of near-contact motion than is 
buoyancy. An explanation for this finding is given in terms of the electro-osmotic slip 
velocity on the particle surfaces that facilitates fluid removal from between approaching 
surfaces. 

1. Introduction 
Colloidal suspensions arise in a diverse range of industrial applications, particularly 

in biotechnology and materials processing. Predicting and manipulating the stability of 
a colloidal suspension is an important goal in many applications. In general, colloidal 
suspensions are stabilized against particle aggregation by the electric charge or c- 
potential of the suspended particles (Russel, Saville & Schowalter 1989). In an 
unstirred vessel, buoyancy-driven relative particle motion may result in aggregation of 
particles with differing sizes or densities. Charged particles migrate in an applied 
electric field, but, if all particles bear the same c-potential, their migration velocity is 
the same (Acrivos, Jeffrey & Saville 1990), and so there is little tendency for 
electrophoretic aggregation. However, in a heterogeneous suspension, electrophoretic 
aggregation of particles with differing <-potentials is possible. 

Under low-Reynolds-number conditions, an isolated spherical particle sediments 
with its Stokes velocity through a fluid with viscosity ,u (Kim & Karrila 1991): 

where i = 1,2 is the particle label, a, is the particle radius, Api = pi -p  is the excess 
density of the particle, and g is the local acceleration due to gravity. By contrast, the 
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electrophoretic velocity of a charged particle is independent of its size, shape, and 
density (Smoluchowski 1903) : 

(1.2) 

where e is the dielectric constant of the suspending fluid (usually aqueous) and E" is 
the strength of the applied electric field. 

In dilute suspensions of spherical particles, as assumed herein, aggregation rates may 
be predicted from pairwise calculations that require two-sphere mobility functions 
which describe the relative motion of two interacting spheres (Batchelor 1982). Our 
analysis, and the discussion that follows, are restricted to axisymmetric motions. For 
electrophoretic and buoyancy-driven motion, two-sphere mobility functions are 
efficiently approximated by the method of reflections at interparticle separations large 
compared to the particle sizes (Happel & Brenner 1983; Chen & Keh 1988). At 
separations comparable to particle size, exact solutions in bispherical coordinates are 
most efficient (Stimson & Jeffery 1926; Reed & Morrison 1976; Keh & Chen 1989). As 
the interparticle separation, h, between two particles tends to zero, relative motion 
parallel to their line of centres vanishes because of the large pressure required to 
squeeze the remaining fluid from the gap between particles. Moreover, bispherical 
coordinate solutions are singular for h + 0. Since pairwise aggregation rates are 
strongly affected by particle interactions at small interparticle separations (Davis 1984; 
Nichols, Loewenberg & Davis 1995), an accurate description of near-contact motion 
is needed. 

In principle, numerical boundary-collocation solutions can be used to calculate 
two-sphere mobility functions in the limit h + 0, although these solutions are com- 
putationally intensive for small gap widths (Gluckman, Pfeffer & Weinbaum 197 1 ; Keh 
& Yang 1990). Analytical, lubrication solutions are available for buoyancy-driven 
motion (Cooley & O'Neill 1969a, b). Generally, lubrication and series solutions 
overlap on a finite range of small gap widths, eliminating the need for time-consuming 
numerical calculations at very small gap widths. 

Electrophoretic and buoyancy-driven collection rates of particles at a solid boundary 
from a dilute suspension can be calculated using only axisymmetric mobility functions 
for a single particle moving perpendicular to a planar boundary. Sphere-wall mobility 
functions have been derived by the method of reflections (Happel & Brenner 1983; Keh 
& Anderson 1985), using bispherical coordinates (Maude 1961; Brenner 1961; Keh & 
Lien 1989), and by collocation methods (Dagan, Pfeffer & Weinbaum 1982; Keh & 
Lien 199 1). As for two-sphere mobility functions, method-of-reflections solutions are 
inaccurate, bispherical solutions become singular, and boundary collocation is time- 
consuming as the particle-wall separation, h, vanishes. Particle collection rates are 
dominated by the slow, near-contact motion of a sphere towards a solid boundary. 
Lubrication solutions are available for buoyancy-driven motion (Cox & Brenner 1967), 
but not for electrophoresis. 

The aim of this paper is to provide a lubrication solution that describes the 
axisymmetric, near-contact electrophoretic motion of two spherical particles with radii 
a, and a, = ha,, reduced radius a = (l/a, + l/a,)-', and [-potentials [, and [, = /3cl, as 
depicted in figure 1. The particles are separated by a small gap width, 6 = h/a  4 1, and 
are embedded in a uniform electric field, Em, parallel to their line of centres. A parallel 
development for buoyancy-driven, near-contact motion of two particles with excess 
densities Ap, and Apz = yAp,, is used to elucidate the fundamental differences between 
the two mechanisms. A lubrication formula describing near-contact electrophoretic 
motion of a spherical particle towards a planar conducting boundary is also presented, 

u g . m  = - 4 i  E m ,  

P 
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FIGURE 1. Defining sketch for two particles in close contact. 

and the result is contrasted with its buoyancy-driven analogue. The results presented 
in this article are useful for theoretical predictions of electrophoretic aggregation and 
collection rates. 

A detailed discussion of the assumptions appears in $2. In $3, expressions are 
obtained in terms of pairwise resistance functions for the relative and pair velocities of 
two particles that are in near contact. A scaling analysis for the two-particle lubrication 
problem, results for equisized particles, and an asymptotic formula for disparate 
particles are presented in $4. The axisymmetric electric and fluid velocity fields away 
from the small interparticle gap are obtained by the numerical procedure described in 
$ 5. Numerical results for pairwise and relative particle velocities are presented in $6. 
The related problem of a particle in near contact with a plane boundary is formulated 
and solved analytically in $7. Concluding remarks are made in $8. 

2. Assumptions and governing equations 
The analysis is restricted to moderately charged, dielectric particles with thin electric 

double layers (Dukhin & Derajaguin 1974; O'Brien 1983): Kaiexp ( - z  1&1/50 mV) + 1, 
where K-' is the double-layer thickness or Debye length, and z is the valence of the 
highest-charged counter-ion in a room-temperature electrolyte. It can be shown that 
the thin-double-layer assumption is generally satisfied for moderately charged particles, 
5, - 50 mV, even in weak electrolytes, lop4 molar or larger, provided that a, > 0.1 pm 
(Russel et al. 1989). 

We shall assume that the Reynolds number of particles migrating in an electric 
field, Ref = pUf ai/p = pc<, E*ai/p2, is small compared to unity. In water, 
Ref - lop6 ([JrnV) (aJpm) (E"/kV m-I), indicating that Ref 4 1 for a, < 1 cm and 
typical field strengths and potentials: E" - 10 V cm-l and <, - 50 mV. Brownian 
motion is neglected on the assumption that the PCclet number for a particle migrating 
in an electric field, Pef = U,ai/Di = 6ne& E"at/kT, is large, where D, = kT/6npai is 
the Stokes-Einstein particle diffusivity (Kim & Karrila 1991). In room temperature 
water, Pef - 3(a,/pm)' (&/mV) (E"/kV m-'), indicating that Pef % 1 for E" - 
10 mV cm-l, Q - 50 mV, and a, > 0.1 pm. We note that non-Brownian particles 
typically have thin electric double layers. 

The corresponding Reynolds and PCclet numbers for a particle sedimenting in room- 
temperature water are Ref - G(Ap,/p) (a,/30 ~ m ) ~ ,  and Pef - lOG(Ap,/p) ( a , / ~ m ) ~ ,  
where G is the local acceleration due to gravity normalized by the terrestrial value. 
Therefore, the assumptions Ref 4 1 and Pef + 1 apply for (GAp,/p)-'/* pm < a, < 
30(GA~~/p) - '~~  pm, representing a size range spanning only 1-2 orders of magnitude 
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in normal and microgravity. By contrast, these assumptions are valid for electro- 
phoresis of moderately charged particles in the size range $(E""/kV m-1)-112 pm < 
a, < (Em/kV m-')-' cm, a five-orders-of-magnitude size range for Em - 10 V cm-l, 
provided that the suspending electrolyte is not extremely weak. 

Under low-Reynolds-number conditions, fluid motion is governed by the Stokes 
equations (Kim & Karrila 1991). Outside the thin electric double layers on the particle 
surfaces, the suspending electrolyte is electrically neutral ; thus, the electric field is 
governed by the Laplace equation (Russel et al. 1989). Far from the two suspended 
particles, we assume that the fluid is at rest and the electric field tends to the uniform 
value, Em,  that is parallel to the line of centres. The electric field and fluid velocity obey 

CL'i E(x)-n = 0, u(x) = u,--E(x),  
P 

(2.1 a,  b )  

on the particle surfaces, provided that the thin-double-layer assumption holds (Dukhin 
& Derajaguin 1974; O'Brien 1983). The second term on the right-hand side of (2.1 b )  
represents the electro-osmotic slip velocity that results from electrically driven 
convection of the charged fluid in the double layer. The fluid velocity and tangential 
component of the electric field vanish on a conducting solid boundary. 

Electrokinetic effects that arise from electric double-layer overlap between two 
particles in near contact are neglected, and non-hydrodynamic, colloidal forces are not 
included in the analysis herein. However, as discussed in the conclusion, the 
electrokinetic effect of double-layer overlap is easily incorporated, and colloidal forces 
can be combined with the results presented in this article by superposition. 

3. Formulation of the two-sphere problem 
3.1. Arbitrary interparticle separations 

The theoretical description of two interacting particles in buoyancy-driven motion is 
reviewed first ; an analogous description for electrophoretic motion follows. The force 
balance along the line of centres on each of two translating particles under buoyancy- 
driven conditions is Ff  + FF = 0, where Ff  = $nu: Apzg and FF are the buoyancy and 
hydrodynamic forces, respectively, acting on each particle (i = 1,2) parallel to the line 
of centres. By the linearity of the Stokes equations, the hydrodynamic forces may be 
described with hydrodynamic resistance functions : 

FF = - 6npa1 [A:( Ul - U,) + A H 11 UJ, FF = - ~ X P L Z ,  [A:( U2 - U 1 ) + A w 2 1 ,  (3.1) 

where A: + 1 , A; --f A, and A: + 0 for widely separated, non-interacting particles, and 
A; = A: by a Lorentz-type, reciprocal relation (Kim & Karrila 1991). The buoyancy- 
driven particle velocities are found by inverting these equations : 

where h = a2/a l  is the particle size ratio and y = Ap2/Ap1 is the ratio of their excess 
densities. 

Although electrophoretic motion is force free, we may consider that this results from 
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a balance of electro-osmotic and hydrodynamic forces : Ff  + F f  = 0. The hydro- 
dynamic forces, FF, given by (3.1), are those acting on each of two, uncharged 
particles translating with velocities Uf. The electro-osmotic forces, F f ,  are those 
required to hold stationary each of two particles that are embedded in an applied 
electric field, Em, that is parallel to their line of centres. By the linearity of the Stokes 
equations, the electro-osmotic forces can be expressed in terms of ' electro-osmotic 
resistance ' functions : 

Ff = ~ ~ ~ ~ , ~ ~ ; , ~ c , - c 2 ~ + ~ ; l c l l ~ " ,  Ff = ~ ~ ~ ~ , ~ ~ f l ~ c ~ - c l ~ + ~ f 2 c l l ~ " .  (3.3) 

Using (3.1), the electrophoretic migration velocity of each of a pair of force-free 
particles in an applied electric field is obtained: 

where p = <,/Cl is the ratio of the particle zeta-potentials. We have exploited the fact 
that Uf = U ;  = Ufs" at all interparticle separations if = c2 (Reed & Morrison 
1976; Keh & Chen 1989), which implies that Afl = A:, and Af2 = A;. At large 
interparticle separations, A;, + 0, and Af1 + A. 

3.2. Near-contact motion 
For two spherical particles in point contact (6 = 0), Ul = U, = Up,  where U p  is the 
pair migration velocity. In this case, the hydrodynamic resistance functions A: and A; 
are given by Rf and Rf that describe the hydrodynamic resistances of each particle 
for painvise translation in the point-contact configuration. Similarly, Rf and Rf will 
be used to denote Af, and Afl for this tangent-sphere geometry. The hydrodynamic 
and electrophoretic resistance functions, Aij (i,j  = 1,2), depend on size ratio and 
interparticle separation; the tangent-sphere resistances, Ri (i = 1,2) depend only on A. 

For tangent particles, the hydrodynamic and gravity or electro-osmotic forces do 
not balance; a 'contact force', 42, that acts on each particle with equal magnitude but 
opposite direction at their point of tangency completes the force balances : 

Apl g - 67c,ua1 RF Ug - FF2 = 0, (3 .5~)  

$a: Ap2g-67c,ual RF Ug+Ff2  = 0, (3.5b) 

67csa1 [R;(& - Q) + RF el] E" - 67c,ua1 RF UF - Ff2 = 0, (3 .6~)  
67cca1 [Rf(c2 - el) + Rf el] E" - 67cpa1 Rf UF + Ff, = 0. (3.6b) 

Solving (3.5) and (3.6) yields the pair migration velocities and contact forces for 
buoyancy and electrophoretic motion : 

(3.8a, b) 
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where U,/U? is the pairwise mobility function; Up, depends only on the size ratio and 
is the pairwise migration velocity when the smaller particle is passive (neutrally 
buoyant or uncharged). 

Away from the gap that separates the two particles in near contact (6 + l), the 
electric field and fluid velocity can be computed to O(6) by considering tangent particles 
as described above. In the gap, each field is sensitive to the gap width, but its 
contribution to the overall hydrodynamic and electro-osmotic resistances is very slight. 
In 95.4, we show that 

A: = Rr+O(S), A; = Rf+O(S), (3.10~) 

A:, = Rf + O(6), (3.10b) 

Thus, the near-contact form of the individual particle velocities, given by (3.2) and 
(3.4), can be expressed in terms of a pair migration velocity and deviation velocities 
due to the contact force: 

A:, = R: + O(6). 

u, = U,+aU,,, u, = U,+(a- 1) u,,, (3.11) 

where CX. = Rf/(RF + Rf). (3.12) 

The partitioning parameter, a, describes the fraction (0 < CX. d i) of the relative particle 
velocity, U,, = U, - U,, resulting from the deviation of each particle velocity from the 
pair velocity attained for 6+0: 

(3.13) 

where a = (l/al + l/a,)-' is the reduced radius. 
The lubrication resistance, RE, opposes the contact force, and describes the motion 

of two particles along their line of centres resulting from an equal-but-opposite force 
acting on each (Cooley & O'Neill 1969 a )  : 

RE = limAE-aRr = -- I + 7h + In a+ C+ O(61n 81, 
6 + 0  6 5(1+h)2 

(3.14) 

where C is determined by matching relative particle velocities predicted by (3.13) with 
the results of exact calculations at small, but finite gap widths (Cooley & O'Neill 
1969~). At leading order, (3.14) reduces to the classic Reynolds lubrication formula. 

The dimensionless near-contact relative mobilities L,, = U , , / U ~  (Batchelor 1982) 
are obtained from (3.8), (3.13) and (3.14): 

Rf - Rryh3 
(1 -yh2)(Rf+Rr) '  

(3.15 a)  6( 1 + h) /h  
L?, = 

+ 7h + h2gln 6+ CG 6 
5(1+ A), 

1- 

(3.15b) 
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which are accurate to 0(d3 In 6). Relative mobilities are useful for trajectory 
calculations of pairwise aggregation rates (Davis 1984; Nichols et al. 1995); we can 
interpret L,, as the 'efficiency' of near-contact motion. By the invariance of 
particle labelling, buoyancy-driven relative particle mobilities obey the relationship 
Lf2(h, y )  = LF2(h-l, y-'); Lf2 is independent of the density ratio, y, only for h = 1 and 
y + 1 (Batchelor 1982). In contrast, Lf2(h) = Lf,(h-l) depends on the size ratio only 
(Chen & Keh 1988). 

4. Scaling analysis and formulae for two particles 
4.1. Nearly equisized particles: 1 - h < 1 

For particles of nearly equal size, the hydrodynamic and electro-osmotic resistances of 
each particle differ by only 0( 1 - A ) .  Thus, 

L,, = O(6) + 0(6[1 -A ] ) ,  - UP = 0 (::I:) ~ = 1+0(1-h), (4.1a,b) 
UE Q 

where U,, refers to the pairwise migration velocity of an equisized pair, given by (4.2) 
or (4.4). For exactly equisized particles, FF = F f  and f'F(<l,c2) = FF(<2,cl) by the 
invariance of particle labelling. From (3.1) and (3.3), A: = LIE = AE 21  - A E  12 and 
Rr = RF = Rf-Rf for touching particles. According to (3.12), a: = 1/2; thus, 
equisized particles in electrophoretic or buoyancy motion deviate equally from the 
pair velocity : Ul - U p  = U p  - U,, consistent with (4.1). 

From (3.7b), we recover the result that the electrophoretic pair migration velocity of 
equisized particles is exactly the average, isolated electrophoretic migration velocity of 
the two particles (Keh & Yang 1990): 

(4.2) u; = f( ufg " + uf,  "). 
For equisized particles, RY = RF = 0.645 141 (Cooley & O'Neill 1969b); according to 
(3.7 a), buoyancy-driven pair migration velocities exceed the average, isolated 
sedimentation velocity by 55 % : 

Ug = 0.775 024( Uf ,  + Uf ,  "). (4.3) 

For equisized particles with different densities in near-contact buoyancy-driven 
motion, (3.15 a) yields 

6 '" = 1 -&6ln6+ 1.666' (4.4) 

where the matching constant was obtained numerically (Cooley & O'Neill 1969a) ; 
for h $: 1, the result depends on y. The scaling prediction, (4.1 a), indicates that 
electrophoretic and buoyancy-driven relative mobilities are comparable for h = 1 ; 
however, quantitative results for electrophoresis reported in 9 6 indicate that 
electrophoretic relative particle motion is about three times more efficient than 
buoyancy for equal-size particles. 

4.2. Small size ratios: h < 1 
For h < 1, the buoyancy-driven flow field past a tangent pair of particles is dominated 
by the flow field associated with the isolated migration of the larger particle. The 
component of hydrodynamic stress parallel to the velocity of an isolated particle is 
uniform on its surface. Since the fraction of the larger particle surface occluded by the 
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smaller particle is O(h2), we estimate that RF = 1 - O(h2). The hydrodynamic force on 
the smaller particle is estimated as Ff = Oba, ur(xz)], where u,(x2) = O(h'Uf,") is the 
radial component of the velocity field associated with the isolated, buoyancy-driven 
migration of the larger particle, evaluated at the centre of the smaller, tangent particle 
(Kim & Karrila 1991). Thus, we obtain the estimate Rf = O(h3) for h Q 1 ; apparently, 
hydrodynamic and buoyancy forces on the smaller droplet are comparable. 

For the case 6, = 0, the electro-osmotic force on the smaller particle is estimated as 
Ff = O[ea, cz ET(xz)], where Er(x2) = O(hEm) is the radial component of the electric 
field evaluated at the centre of the smaller particle (Russel et al. 1989). According to 
(3.3), we obtain the estimate Rf = O(h') for h < 1. Similarly, Rf = O(h') for h Q 1, 
according to (3.6a), (3.7b), (3.8b), and the above scaling results for Rr. 

Inserting the above estimates into the formulae listed in $3.2, we obtain 

for h 6 1. These results indicate that painvise mobilities are more sensitive to P than 
y, and that the larger particle moves at nearly the pairwise velocity; relative particle 
motion results from the velocity deficit of the smaller particle. Most significantly, 
electrophoretic relative particle motion is more efficient for small size ratios : 

Lf2 = O(6h2), Lf2 = O(6h3). (4.64 b) 

Electrophoretic motion is force-free and torque-free ; thus, an isolated particle 
generates a potential-flow velocity field. A comparison of the potential-flow field past 
a spherical particle and the viscous Stokes flow field past a spherical bubble reveals 
that, in the neighbourhood of the sphere surface, the potential-flow field past a particle 
migrating with velocity Ug," is exactly equal to the Stokes flow field past a bubble 
migrating with velocity 3 Ufg " (Kim & Karrila 1991). This observation implies that the 
electrophoretic contact force, Ff . ,  propelling a very small, passive particle (C2 = 0) at 
the forward stagnation point of a larger, electrophoretically migrating particle equals 
the hydrodynamic force, F Z ,  that pushes a small particle towards the front stagnation 
point of a bubble, provided that the buoyancy-driven migration velocity of the bubble 
is 3Uf3". Exploiting this observation, and Takagi's (1974) solution for the 
hydrodynamic force on a very small particle at the stagnation point of a bubble 
migrating with velocity 3Uf." ,  we find that Ffz = FE = 172.930h2pu1 Uf-"  = 
172.930h2ea,<,E" for the case c2 = 0. Then, from (3.8b) and the fact that the 
resistances are independent of the zeta-potentials, we obtain Ff. = 1 72.930h2ea1 
x (el - c2) E m  for the general case cl, cz =l= 0. Inserting F f , ,  and the above esti- 
mates Rf = O(h3) and UF x UEsW = (C<~;,/,U)E" into (3.6b), we find that 
Rf = 9. 17420h2 + O(h3) for h 4 1. The analogous hydrodynamic force that pushes a 
very small particle towards a larger, buoyancy-driven particle is 6nal p Uf ,  Rf , where 
Rf = 4.84400h3 + O(h4) (Goren 1970). Inserting these results, and the above estimates 
RF x 1 and Rf = O(h2), into (3.15) and (3.12), we obtain the asymptotic formulae 

for h 4 1. 
4.3. Discussion 

Electrophoresis is a much more efficient mechanism than buoyancy for near-contact 
relative motion between migrating particles, particularly for small size ratios. Similar 
observations have been made for the efficiency of thermocapillary migration of non- 

Lf. = 9.174206h2, Lf2 = (4.84400-y)6h3, t~ = 4.84400h3 (4.7~-C) 
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conducting drops or bubbles compared to buoyancy-driven migration (Loewenberg & 
Davis 1993 a). For all three mechanisms of near-contact relative particle or droplet 
motion, the continuous-phase fluid is forced out from the gap by a nearly constant 
contact force. In buoyancy-driven motion, the suspending fluid is simply squeezed out 
of the near-contact region by the resultant body force. For solid particles, this squeeze 
flow is resisted by the no-slip requirement, and so the near-contact relative motion due 
to buoyancy is slow. 

In thennocapillary migration, a drop swims through the continuous-phase fluid 
because of an interfacial tension gradient that convects fluid along the drop surface 
from the forward to the rear stagnation point. Loewenberg & Davis (1993~) showed 
that thermocapillary near-contact relative motion of two drops is facilitated by the 
withdrawal of fluid from the lubrication gap because of convection along the interface 
of the larger, faster-moving drop. Similarly, an electrophoretically migrating particle 
swims through a suspending fluid because of fluid convection due to the electro- 
osmotic slip on its surface induced by the applied electric field. Electro-osmotic fluid 
withdrawal from the lubrication gap facilitates the near-contact relative motion. The 
enhancement is partially offset by the injection of fluids into the lubrication gap along 
the surface of the slower moving particle. Thus, electro-osmotic enhancement of the 
relative motion is most pronounced for small size ratios. However, the effect does not 
vanish for equisize particles, provided that cl + c,. 

5. Numerical solution for pairwise motion 
5.1. Tangent sphere coordinates 

The electric field and fluid velocity surrounding two non-conducting tangent spheres 
are obtained using tangent sphere coordinates (7, v, #), as depicted in figure 2. This 
orthogonal, right-handed coordinate system is related to a cylindrical coordinate 
system ( z ,  R, 0) by (Moon & Spencer 1961) 

The origin is at the point of contact between the tangent spheres, and the distance from 
the origin is given by r = (R2 + z2)l/' = 1 / ( r 2  + vZ)l/,. In this coordinate system, tangent 
spheres of radii a, and a, with centres on the z-axis at z = -a, and z = +a, are defined 
by the constant coordinate surfaces 7 = - T ~  = - 1/2a, and 7 = q2 = 1/2az, respect- 
ively; the conjugate coordinate surfaces, v = constant, are tori with zero inner radii. 

5.2. Electric$eld 
The electric field surrounding non-conducting particles embedded in a uniform field, 
Em, is mathematically identical to the steady-state temperature gradient field 
surrounding non-conducting particles embedded in a uniform temperature gradient. 
Thus, we obtain E,,i, the tangential (v-component) of the electric field on the surface 
of each sphere (i = 1,2; 7 = -ql, +T,) by exploiting the solution by Loewenberg & 
Davis (1 993 a)  : 

(5.2a) 

E,, , = -E"(r; + v2)312 J sP2(s) J,(sv) ds, (5.2b) 
0 
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I 
7'0 

FIGURE 2. Tangent sphere coordinates for two spheres in point contact. 

where Em is directed in the +z-direction, 5, is the first-order Bessel function of the first 
kind, and 

(5.3) 
s sinh sv2 

Pl = - P2 = 
sinh $7, + y2) ' 

s sinh svl 

sinh s(7, + q2)  ' 

As (2.1 a) requires, E7 = 0 on the particle surfaces: 7 = -vl, + v2.  Using an identity for 
first-order Hankel transforms (Erdelyi et al. 1954), we obtain a more convenient 
expression to use for incorporating boundary condition (2.1 b) : 

- -- [sP1(s)] - 7: P1(s) sJ,(sv) ds, ( 5 . 4 ~ )  
E,, ) ] = Em($ + v2)li2 

E,, = Em($ + vz)li2 (5.4b) 

5.3. Solution for the pairwise resistance function 
The solution for the flow fields past two touching particles is formulated using the 
tangent sphere coordinates described above. Under the low-Reynolds-number 
conditions, the axisymmetric stream function for the flow field satisfies (Kim & Karrila 
1991) 

where E4@ = E2(E2@) with the E2 operator given by (Cooley & O'Neill 1969b): 

E4@ = 0, (5.5)  

= 0. (5.6) 1 
A general, non-singular solution of (5 .5)  that vanishes at infinity is (Cooley & O'Neill 
1969 b) 

V 
@ = (72 + v 2 ) 3 / 2  1: [(A(s) + '('1 7) sinh '?1+ (B(s) + D(s) 7) 'Osh '71 J1(sV) ds7 (5'7) 
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where A@),  B(s), C(s) and D(s) are determined from boundary condition (2.1 b). 
On the sphere surfaces, y = - y,, + y,, boundary condition (2.1 b) requires that 

@-$" = 0, 7 = -711, +TZ, (5.8a, b) 

(5.8 c) 

(5.8d) 

where EV, ,  and E,,, are the (tangential) electric fields on the particle surfaces, and 
@" = -fR2UP = - f ( ~ / ( y ~ + v ~ ) ) ~  UP represents a uniform flow field in the -z- 
direction. For the present calculation, U, = U, = UP is assumed because the particles 
are in point contact. With the help of the identities (Erdelyi et al. 1954) 

we obtain 

4 1  e-s71sJ,(sv)ds--Eu,,, (5.10~) 

4 2  e-s7ZsJ,(sv)ds--Eu ,. (5.10d) 

r" 
-(y;+v 1 2 ) 2 w  -1 = -2U,y , (y~+~~) ' /~  

- ( ~ : + V ~ ) ~ ~ I  1 = 2Upy2(y:+v2)1/2 

V a7 ?=-TI 

a7 7=72 r " '  V 

Inserting the electric field solution (5.4) and stream function (5.7) into boundary 
conditions (5.10) yields four algebraic equations that determine A($) - D(s): 

- A(s) sinh sy, + B(s) cosh sy, + C(s) yl sinh syl - D(s) y1 cosh sy, = - 2 7, +- UP,  e-sY 3 
(5.1 1 a)  

A($) sinh sy, + B(s) cosh sy, + C(s) y, sinh sy, + D(s) y, cosh $7, = 
2 

(5.11 b) 
sA(s) coshsy, -sB(s) sinhsy, - C(s) (sy, coshsy, + sinhsy,) +D(s) (sy, sinhsy, +coshsy,) 

syl ecSh 
2 

- - -- 

sA(s)coshsy,+sB(s) sinhsy,+ C(s) (sy,coshsy,+sinhsy,)+D(s) (sy,sinhsy,+coshsy,) 

where Pl(s) and P,(s) are given by (5.3). We note that the simpler forms for the electric 
field, (5.2a, b), are incompatible with the velocity stream function. 
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The forces acting on the particles are obtained by numerical integration (Cooley & 

s[A(s)-B(s)]ds, F, = -4npua, s[A(s)+B(s)]ds. (5.12) 

The results of Cooley & O'Neill (1969b), 4 = -6na, RHUp, are recovered by 
setting 5, = c2 = 0 in (5.11). Setting U p  = el = 0 yields = - 6ma,  c2 Rf E" and F, = 
6nea, Q Rf E". For equisized particles in buoyancy migration, (5.1 1) reduces to two 
independent equations because of the fore-and-aft symmetry. The electrophoretic 
analogue is uninteresting: only the hydrodynamic resistances can be obtained for the 
symmetric case, 5, = c,, as (3.6) indicates, and the fore-and-aft symmetry for equisized 
particles is broken for el + 6,. 

5.4. Velocity field near the contact point 
Demonstrating the validity of approximation (3.10) requires an analysis of the velocity 
field in the lubrication gap between the particles. The fluid velocity is exponentially 
small near the contact point between tangent spherical particles in axisymmetric, 
buoyancy-driven migration (Davis, et al. 1976; Yiantsios & Davis 1991). It follows that 
viscous stresses in the near-contact region between the particles make a negligible 
contribution to the pairwise resistance functions, A: and A;. Away from the gap, 
viscous stresses on the particle surfaces are obtained to O(8) by the analysis presented 
in the preceding subsection that considers particles in point contact. Thus, (3.10a) is 
correct as asserted. 

An analysis of (5.2) reveals that the axisymmetric electric field decays exponentially 
near the contact point between tangent spheres (Loewenberg & Davis 1993a). With the 
help of boundary condition (2.1 b),  and the results for buoyancy-driven migration, we 
conclude that the velocity field is exponentially small near the contact point between 
tangent spherical particles in axisymmetric, electrophoretic migration. Then, by the 
arguments used above for buoyancy-driven migration, we conclude that (3. lob) is also 
valid. For both electrophoretic and buoyancy-driven migration, the flow field in the 
near-contact region is dominated by the lubrication flow associated with the relative 
motion between two spherical particles under the action of a constant force, 4,. 

6. Numerical results and discussion 
6.1. Pairwise mobilities 

As is apparent from (3.9), electrophoretic and buoyancy-driven pairwise mobilities for 
all density, charge, and size ratios can be inferred from the function Up,,, which 
depends only on the size ratio and is shown in figure 3. As an illustrative example, 
consider two particles with size, charge, and density ratios given by h = p = 0.5 and 
y = 0. From figure 3, we find that Ug,  ,/UFy " = 0.842 and Ug,  1/ Ufp " = 0.953 ; then, 
from (3.9), we obtain U g / U f ? "  = 0.921 and U:/Uf-" = 0.953. Equation (3.9b) 
indicates that electrophoretic pairwise mobilities exceed the isolated mobility of the 
larger particle if, and only if, p > 1.  Equation ( 3 . 9 ~ )  and the results depicted in figure 
3 imply that U g  > Uf." can occur for y < 1. Pairwise electrophoretic mobilities 
vanish for /? = - ( U z ,  ,/Uf- ")I( 1 - UF, ,/Uf- "), whereas y = -Ap3 yields US = 0. As 
(4.5) predicts, figure 3 and (3.9) indicate that p and y have comparable effects on pair 
mobilities for h = O(1);  however, Ug is much more sensitive to p than Ug is to y for 
A <  1 .  
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FIGURE 3. Electrophoretic (solid curve, /3 = 0) and buoyancy (dashed curve, y = 0) pair mobilities 
versus particle radius ratio. Results for /3, y += 0 are obtained from equation (3.9). 

6.2. Relative mobilities 
At leading order, 

4 2  L,, 6-1 = 
6npa U ;"z ' 

according to (3.13) and (3.14). Figure 4 depicts L1,6-' as a function of size ratio. As 
discussed beneath (3.15), electrophoretic relative mobilities are fully conveyed by these 
results. Buoyancy-driven relative mobilities depend also on y. We chose y = 0 for 
comparing the two mechanisms; similar results were obtained for different values. Also 
shown in figure 4 is the relative motion partitioning coefficient, as defined by (3.11) and 
(3.12); individual particle velocities can, therefore, be inferred from figures 3 and 4. For 
example, consider two particles with size, charge, and density ratios given by 
h = /3 = 0.5 and y = 0. From figure 4, we find that Lf2 6-1 = 2.59, LF2 6-l = 0.532, and 
01 = 0.179. Then, from (3.11) and the painvise velocities calculated above, we obtain 
Uf/Uf330 = 1.38, Uf/Uf~O0 = 1.21, U f / U F , m  = 1.05, and U,"/Uf ,"  = 0.52. 

The efficiency of electrophoretic relative motion, compared to buoyancy-driven 
relative motion, is illustrated in figure 5 .  Apparently, Lf2/LF, > 3 for all size ratios, and 
Lf2/LF2 z 1.8914 1 - 0.206~) for h 4 1, as predicted by (4.7 a, b). 

Figure 6 depicts relative mobilities as a function of gap width. The complete 
lubrication solution, (3.19, is contrasted with the leading-order approximation, (6.1) ; 
the required parameters are listed in table 1. Also shown are exact calculations 
obtained using the collocation solution for electrophoretic motion by Keh & Yang 
(1990), who generously supplied their FORTRAN algorithm, and a bispherical coordinate 
solution (Stimson & Jeffery 1926) for buoyancy motion. The results depicted in figure 
6 demonstrate that the complete and leading-order lubrication solutions converge to 
the exact results in the limit 6+ 0, and that the complete lubrication solution accurately 
approximates exact calculations at even moderate gap widths. 

For buoyancy-driven particle motion, the exact, bispherical coordinate solution 
converged at all gap widths in the range depicted in figure 6. For electrophoretic 
migration, Keh & Yang's (1990) collocation algorithm was implemented using 
N ,  = Nl + N2 < 240 total collocation points, where N J N ,  = A, and Ni(i = 1,2) are the 
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FIGURE 4. Electrophoretic (solid curve) and buoyancy-driven (dashed curve, y = 0) relative particle 
mobilities and partitioning parameter (dashed-dotted curve) versus particle radius ratio ; the dotted 
lines represent asymptotic formulae (4.7) for small size ratios. 

0.2 0.4 0.6 0.8 1 .o 
h 

FIGURE 5. Ratio of electrophoretic to buoyancy-driven (y  = 0) relative particle mobilities versus 
particle radius ratio ; the dotted curve represents asymptotic formulae (4.7) for small size ratios. 

collocation points on each particle. With this policy, the collocation algorithm 
successfully converged for all calculated results depicted in figure 6 ; convergence was 
not achieved at smaller gap widths. The results indicate that the performance of the 
collocation solution deteriorates as the particle size ratio decreases; using N ,  < 240, it 
was not possible to determine the matching constant for h < by the procedure 
described beneath (3.14). In principle, numerical convergence could have been achieved 
at smaller gap widths, and for smaller size ratios, by increasing N,;  however, 
implementing the collocation algorithm with N ,  > 240 is time consuming. Moreover, 
the performance of the collocation algorithm (Keh & Yang 1990) is superior (Keh, 
personal communication) to an exact solution is bispherical coordinates (Keh & Chen, 
1989). These observations provide practical motivation for the lubrication solutions 
presented in this article. 
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FIGURE 6. Higher-order solution for electrophoretic (solid curves) and buoyancy-driven (dashed 
curves; y = 0) relative particle mobilities versus dimensionless separation for size ratios (a) h = 1, (b)  
h = 1/2, and (c) h = 1/3. The dotted lines are the leading-order solutions from (4.7); the symbols 
represent exact calculations for electrophoresis from Keh & Yang's (1990) collocation algorithm (+) 
and a bispherical coordinate solution for buoyancy-driven motion ( x ). 
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h 1 1 I 2  113 114 115 1.10 

C E  2.24 1.84 1.71 z 1.5 (-1 (-1 
Lf2 S' 3.01 105 2.53644 2.02634 1.66840 1.41403 0.798428 

TABLE 1. Values for the electro-osmotic 'contact force', and matching constant in (3.13) and (3.14) 
that were obtained according to the numerical procedure described in $ 5 ;  (-) indicates that the 
matching constant could not be evaluated from exact calculations using N ,  = 240 collocation point. 
The asymptotic formula, (4.7a), is accurate to 5 %  for A < 1/30. 

7. Motion of a particle towards a planar boundary 
In this section, we determine the motion of a charged spherical particle towards a 

nearby conducting boundary due to an applied electric field, E", normal to the 
boundary. The lubrication solution contained herein complements the collocation 
solution of the same problem presented by Keh & Lien (1991). We note, however, that 
the normal electric field will cause a flow of ionic charge toward the boundary; the 
ionic species build up near the boundary and cancel the electric field in the vicinity of 
the boundary after a short time. This electrode polarization limits the practical 
application of the results. 

By analogy with the development in $3, we write 

where U, is the near-contact velocity of a particle with radius a normal to the planar 
boundary, FB is a constant, or nearly constant, contact force that drives the particle 
towards the boundary, and R, is the lubrication resistance given by (3.14) in the limit 
h+0. Taking Fg = $na3Apg, Cox & Brenner (1967) obtained 

6 
" = 1 -$61n6-0.0287206 

for gravity-driven motion with 6 = h/a  < 1, where the matching constant in (3.14) was 
determined analytically (Maude 1961; Brenner 1961). L, = U/U" defines the 
sphere-boundary mobility function, where U" is given by (1.1) or (1.2). 

By analogy with (7.2), the electro-osmotic force acting on a stationary particle at 
arbitrary particle-wall separations is F; = 6neai3; Em,  where A: is the electro- 
osmotic resistance. For 6 = 0, A; = R;, where R; is the electro-osmotic resistance for 
a particle touching a planar conducting boundary. It will be shown that the electric 
field and fluid velocity in the near-contact region make a negligible contribution to A; : 

A; = R:+ O(6). (7.3) 

With the help of (7. l), we obtain the electrophoretic analogue of (7.2), representing the 
sphere-boundary analogue of (3.15 b) : 

(7.4) 

Away from the near-contact region, the electric field strength and the resulting 
electro-osmotic flow field on the particle surface are comparable to those on an isolated 
particle; it follows that RZ = O(1). Thus, with the help of (7.2) and (7.4), we obtain the 
estimate L, = O(S) for both electrophoretic and buoyancy-driven, near-contact 
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FIGURE 7. Higher-order solution for electrophoretic (solid curves) and buoyancy-driven (dashed 
curves) particle-boundary mobilities versus dimensionless separation. The dotted lines are the 
leading-order solutions; + and x represent exact calculations for electrophoresis (Keh & Lien 1991) 
and buoyancy-driven motion (Cooley & O’Neill 1969 a), respectively. 

particle motion towards a boundary. According to an analysis similar to that presented 
by Loewenberg & Davis (1993 b) for the thermocapillary motion of a drop near a plane, 

$s + f sinh 2s sinh s 

sinh’ s - s2 cosh3 s 
s2ds = 5.13817. 

Inserting this result into (7.4), we obtain 

5.138 176 
“ = 1 -31n6+2.716’ 

(7.5) 

where the matching constant, C E ,  was obtained by the procedure described beneath 
(3.14) using the exact results of Keh & Lien (1991). 

Figure 7 depicts sphere-boundary mobilities as a function of gap width. The 
lubrication solutions, (7.2) and (7.6), are compared to exact calculations for 
electrophoretic (Keh & Lien 1991) and buoyancy-driven (Cooley & O’Neill 1969a) 
motion of a particle towards a planar boundary. The results indicate that the 
lubrication solutions, and their O(6) approximations, converge to the exact results for 
6-+O. 

Keh & Lien (1991) report exact results, obtained using boundary collocation, for 
6 2 0.01. Presumably, results for smaller gap widths could have been obtained by 
increasing the number of collocation points, but this is a time-consuming procedure. 
By contrast, Cooley & O’Neill report exact calculations, obtained using a bispherical 
coordinate solution, for exceedingly small gap widths: 6 2 5 x The difficulty of 
obtaining exact results for near-contact electrophoretic motion indicates the need for 
the lubrication solutions presented in this paper, as noted at the end of $6.2. 

The lubrication formulae, (7.2) and (7.6), and the results depicted in figure 7, indicate 
that near-contact electrophoresis towards a planar boundary is about five times more 
efficient than buoyancy-driven motion. Similarly, near-contact thermocapillary 
migration of a bubble towards a conducting, solid boundary is about twice as 
efficient as buoyancy-driven migration (Loewenberg & Davis 1993 b). The results 
obtained in this section apparently generalize the analogy between electrophoretic 
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and thermocapillary near-contact motion, discussed in 94.3. For both mechanisms, 
near-contact motion is enhanced relative to buoyancy-driven motion by a net 
thermocapillary or electro-osmotic withdrawal of continuous-phase fluid from 
the lubrication gap. 

8. Concluding remarks 
In this work, we have analysed axisymmetric, near-contact electrophoretic particle 

motion. We considered pairwise and relative motion between a pair of migrating 
particles, and the near-contact motion of a charged particle towards a conducting 
planar boundary. Simple expressions were obtained that describe electrophoresis 
normal to a boundary, and the relative electrophoretic motion between a pair of 
particles that are very different in size. Numerical calculations were performed for all 
size ratios. 

Throughout the article, the results for electrophoretic motion are contrasted with 
those for buoyancy-driven motion. The results for electrophoresis have a universal 
form with respect to the ratio of <-potentials ; they depend only on size ratio, 0 < h < 1. 
Buoyancy-driven relative mobilities depend on size and density ratios. Near-contact 
electrophoretic interparticle motion is at least three times more efficient than buoyancy- 
driven motion; an asymptotic formula indicates that electrophoresis is a much more 
efficient mechanism of near-contact relative motion for small particle size ratios. An 
analytical solution indicates that near-contact electrophoretic migration of a particle 
towards a boundary is approximately five time more efficient than buoyancy-driven 
motion. 

Exact calculations of near-contact electrophoretic motion were found to be 
computationally intensive at small gap widths. This suggests that the two-particle 
lubrication solution formulated in this article will be particularly helpful for obtaining 
the accurate near-contact relative mobilities that are needed for calculating electrically 
driven aggregation rates. Similarly, the formula for near-contact electrophoretic 
motion towards a boundary is needed for calculating the rate of electrophoretic 
particle collection at a conducting boundary. 

An analogy between near-contact thermocapillary migration of non-conducting 
drops and electrophoresis of charged particles is discussed; both mechanisms of near- 
contact motion are considerably more efficient than buoyancy. A qualitative 
explanation for this observation involves withdrawal of the continuous-phase fluid 
from the near-contact region by electro-osmotic or interfacial-tension-driven surface 
convection. For all three mechanisms, pairwise and relative particle motions can be 
decoupled ; near-contact motion is driven by a nearly constant ‘contact force’. 

Electrokinetic effects associated with electric double-layer overlap may be 
incorporated into the leading-order solution for near-contact particle motion, 
developed herein, by using the electrohydrodynamic lubrication formula of Bike & 
Prieve (1 990) : 

l + P  

for thin, slightly overlapping double layers, k a  + 1. In a room-temperature electrolyte, 
B M 4 x 10-5(<,/mV)2, so that B - 0.1 for <, - 50 mV. The electrokinetic effect of 
overlapping double layers is incorporated by inserting (8.1) into (3.13); thus, (6.1) 
becomes 

4 2  6 
L -  

l2 - 6rcpaU2 1 +B(1  SKU))^' 
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for electrophoretic and buoyancy-driven near-contact particle motion, where F,,  is 
obtained in this article. Apparently, electrohydrodynamic effects are unimportant 
for SKU 9 Bl”. Formula (8.1), and the result (8.2), are restriction to 6Ka 9 1. A 
generalization of (8.1), valued for ~ K U  6 0(1), is at present unavailable; the effect of 
electrohydrodynamic lubrication for significantly overlapping double layers is generally 
dominated by the hydrodynamic lubrication resistance considered herein (S. G. Bike, 
personal communication). For near-contact particle motion towards a plane boundary, 
a result similar to (8.2) is obtained using (7.1); the result is subject to the same 
restriction 6 ~ a  % 1. 

Finally, we note that non-hydrodynamic, colloidal forces are readily incorporated 
into the analysis developed herein by writing (Batchelor 1982) 

for near-contact relative motion along the line of centres between a pair of migrating 
particles, where the + or - sign is taken depending on whether the near contact tends 
to increase or decrease the interparticle separation; F,,, and FEsR represent the 
van der Waals attractive and electrostatic repulsive forces, respectively. A similar 
description is obtained for the near-contact motion of a particle towards a planar 
boundary. Convenient formulae are available for FvDw (Gregory 1981 ; Czarnecki 
1979), and FEsR (Hogg, Healy & Fuerstenau 1966). 

This work was supported by NASA grant NAG8-945. The authors are very grateful 
to Professors Huan Jang Keh and Fong Ru Yang for generously providing their 
collocation source code. 
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